Ion balance and osmoregulation

Different ionic concentrations than their environment (ionoregulators) Highly permeable membranes (ions and water), specially gills, gut, skin. Control mechanisms: none (osmoconformers) ion balance (osmoregulators)

ion concentration

Most invertebrates are osmoconformers, some are quasi-conformers while other are osmoregulators. Most vertebrates are osmoregulators.

Diffusion and Osmosis

(b) Diffusion of two solutes Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

<u>Freshwater bony fish</u> Hypertonic [Body] > [Environment] = lon loss = Water influx

Kidney = Efficient monovalent ion resorption (low water permeability)

Urination every 20 - 30 minutes!

Saltwater bony fish

Hypotonic [Body] < [Environment]

- = Water loss
- = Ion influx (due to drinking)

Small amount of concentrated urine 1 - 2% of body weight/day

Saltwater elasmobranch

Isosmotic (slightly hypertonic) [Body] ≥ [Environment]

- = Neutral water movement (some drinking does occur @ 10% rate of SW teleost)
- = Influx of ions (body hypo-ionic); ions make up 50-60% of osmolality

Osmotic balance made up by urea (toxic!!) \sim 350 - 500 mOsm (30 - 50%) Urea toxicity counteracted by <u>trimethylamine oxide (TMAO) (5 - 10%)</u>

Urea production - Ornithine-Urea Cycle (OUC)

Primarily produced in liver, specifically in mitochondria (some production in muscle) <u>Metabolically expensive to produce urea: 5 ATP/mole of urea; ~10% of O2 consumption</u> <u>NEED TO MINIMIZE LOSS</u>

Toxic in most vertebrates = chondrichthyans evolved proteins and enzymes that aren't denatured by high [urea]

Urea/NH3 excretion

Species	Environment osmolality	$\begin{array}{c} \text{Ammonia} \\ \text{excretion} \\ (\mu \text{mol} \\ \text{N} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}) \end{array}$	$Urea \\ excretion \\ (\mu mol \\ N \cdot kg^{-1} \cdot h^{-1})$	Ratio ammonia: urea rates
Marine				
Taeniura lymma	30 ppt	120	740	0.16
Hemiscyllium plagiosum	33 ppt	110	1336	0.08
Leucoraja erinacea	33 ppt	140	400	0.35
	100% SW	111	480	0.23
Squalus acanthias	30 ppt	21	570	0.04
	30 ppt	28	549	0.05
	Fasted	60	750	0.08
	Fed (10 h)	112	1020	0.11
Raja rhina	30 ppt	145	1620	0.09

Kidney

Urea re-absorption/retention and ion exchange: kidney

- Very efficient (90-96% re-absorption of urea)
- Active transport and counter-current system
- Mostly divalent ions (Mg⁺², SO4⁻²) excreted in urine
- Monovalent ions (Na⁺, Cl⁻) resorbed (some excreted)

Elasmobranch Gills

Urea retention and ion exchange in the gills

Elasmobranch

Net influx of Na⁺ and Cl⁻ due to concentration gradient

Rectal gland

Ion regulation: Rectal gland

Rectal gland fluid

Species	Osmolarity (mOsmol.I-1)	Volume (ml.kg ⁻¹ .h ⁻¹)	Na ⁺ Conc. (mmol.l ⁻¹)	Urea Conc. (mmol.l-1)	
Squalus acanthias	800	0.5	240	100	
Scyliorhinus canicula	960	0.19	238	124	
Hemiscyllium plagiosum	797	0.36	249	248	
Raja erinacea (SW)	967	ND	180	ND	
Dasyatis sabina (FW)	53	10	8	20	
Pristin microdon (FW)	55	10	ND	14	

Ion and urea regulation: Gut

- Net secretion of urea into chyme
- Net absorption of Na⁺, Cl⁻ and water in stomach and intestines
- Divalent ions excreted

Euryhaline elasmobranchs

- Atlantic stingray (Dasyatis sabina)
- Tolerance: 2 36.7 ppt salinity

10

8

6

4

2

0

Hour 1

Uv (mL.h⁻¹·kg⁻¹)

Urine production increased 20 fold in ٠ 50% seawater

Low Salinity

Hour 2

- Bull shark (Carcharhinus leucas)
- Tolerance: 0 35 ppt salinity ٠
- Upregulate ion exchange and urea/TMAO production based on environment

Osmotic category	Salinity (mOsm/ kg)	Na ⁺	K	CI-	Urea	TMAO	Plasma osmolality
Euryhaline migrating							
Dasyatis sabina ^c	SW	310	7	300	394		1034
Atlantic Stingray	FW	212	5	208	196		621
Carcharhinus leucas ^d	SW	304	6	315	293	47	940
Bull Shark	FW	221	4	220	151	19	595

Obligate freshwater elasmobranchs

